If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+10t-175=0
a = 1; b = 10; c = -175;
Δ = b2-4ac
Δ = 102-4·1·(-175)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-20\sqrt{2}}{2*1}=\frac{-10-20\sqrt{2}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+20\sqrt{2}}{2*1}=\frac{-10+20\sqrt{2}}{2} $
| 42+9=n+6 | | 10x–6=19 | | 3/4x-20+7/6x+30=15/2x^2-50 | | (x+3)^2=0,16 | | 4r-32=40 | | 6x=126-8x | | (x+3)^2-0,16=0 | | 8x-10=6x-1x+4x | | 4*4.5+12=y | | 3t^2+2500t-2000000=0 | | 2x=2x+2=4x+3=4 | | 5/7x+1/3x=21 | | 7m+9=58m= | | 4y-14=18y= | | 7x+x20=180 | | (x-6)(3x-9)=0 | | 100=n+22 | | 40/x-111/x2=1 | | x-34/2=2x+1 | | -4n-3=3 | | 3.5=15=x | | 13(x-6)=4x-9 | | 5p+3=-7 | | 8x-4=8x+5÷2 | | -2w+10=-3w+60 | | -17+8e=19+4e | | 2x+5=10-5*x | | 7(7x+8)=5(6x+7)+59 | | 3x+5=4(6x-4)+63 | | 9+9=h | | 3x+12=23-2 | | (2x-1)/3=(x+3)/2 |